A Simulation-Optimization Formulation for Design of Off-Peak Delivery Policies

Michael A. Silas, MS
Ph.D Student
Rensselaer Polytechnic Institute
The Department of Civil and Environmental Engineering
Outline

- Introduction
- What exactly are Off-Peak Deliveries (OPD)
- New York City study on OPD
- Simulation-Optimization Framework
- Findings
- Conclusions
- Questions
Introduction

- Urban vehicle traffic congestion is a serious problem
- Another method is to control delivery times on the business and corporate levels of operations.
 - Specifically having carriers shift part of their shipping operations to the *off-peak hours*
 - *Ex: One seventy foot truck occupies about 3 car lengths*
 - *Parking and Interstate space are scarce in congested areas*
- Shifting delivery times has the potential to reduce traffic congestion and improve environmental quality
What exactly are Off-Peak Deliveries (OPD)?

- Off-Peak Deliveries (OPD) is the receiving and shipping of goods outside of regular business hours (6PM and 6AM)
 - OPD needs the two major stakeholders to agree about delivery times: Receivers and Carriers
- Incentives for participation
 - Receivers – tax deductions
 - Carriers – toll discounts, financial rewards
- Policy analysis techniques are needed to understand how to increase the participation in OPD
Studies on OPD

- New York City
- NYSDOT initiative
 - Two phases: Manhattan and Brooklyn
 - Outreach efforts
 - Focus Groups
 - In depth Interviews
 - Surveys
- Key Findings
 - Receivers are the main stumbling block to OPD
 - Tax deductions would foster OPD
 - Carriers are most likely to participate in OPD
Studies on OPD

- Schematic of decision making process

Further work is needed to understand how to foster more OPD

9/18/2007
Simulation-Optimization Framework

- **September 11th Program** funded research
- ”A Simulation-Optimization formulation for the design of OPD”
- Using Economic Incentives to foster more participation
 - Receivers: Tax deductions
 - Carriers: Toll Savings, Financial Rewards
- Randomly select a commodity, a carrier, and a set of receivers.
 - Simulate receivers’ and carrier behaviors towards OPD
 - Optimize OPD participation, budget constraints
Define performance metrics/objectives to optimize and policies Π_r and Π_c

Carrier-Receiver Selection Process
- Randomly select industry segment k (commodity)
- Randomly select one carrier from industry segment k
- Read number of receivers for industry segment k
- Randomly select number receivers designated by selected carrier number of stops

Receiver Simulation
- Model selected receivers’ decisions
- Classify into regular hour receivers and off-peak receivers

Carrier Simulation
- Compute base case, regular hour and off-peak distances and costs.
- Model selected carrier’s decision to do OPD.
- Save the results and compute performance metrics.

Repeat for another carrier

Update policies Π_r and Π_c until optimization is complete

End
Receiver Simulation

- Use Discrete Choice Modeling with Tax Deduction as policy variable to model the Receivers’ decision about the delivery time of goods and services.
- Monte Carlo Simulation is used as a platform to model the receivers’ decision.
Carrier Simulation

- Model the decisions of Carriers on whether or not to make OPD based on:
 - Receivers’ (Customer) decisions
 - Calculation of shortest route distances amongst Receivers
 - Calculation of transportation costs
Carrier Simulation

- Calculate shortest tour distance amongst the selected receivers
 - Heuristics like the Radial Sweep Heuristic

Longitude

Latitude

9/18/2007
Carrier Simulation

- **Cost Estimations:**

\[C = C_d \times D + C_t \times T + 15 \times C_t \times \text{Stops} \]

\[C_d \] = cost per mile

\[D \] = delivery route distance

\[C_t \] = cost per minute

\[T \] = Travel time

- **Assumption:**

- Carriers can travel twice the speed in the OP than in RH and BC
Findings

- The decision for Carriers to do OPD is driven by Receiver behaviors.
- Transportation costs are influenced by the distance to the first stop.
Findings

- Receiver and Carrier participation is increasing with respect to increases in the economic incentives given to Receivers.

![Graph showing the relationship between Tax Deduction given to Receivers ($) and % of OPD Participation.]
Findings

- Carrier route selection influences decisions on OPD
- Areas with higher densities of receivers influences OPD operations
- Industry Segments most receptive and sensitive to OPD
 - Food
 - Non-Alcoholic Beverages
 - Alcoholic Beverages
 - Printed Material
 - Paper
 - Medical Supplies
 - Metal
 - Wood/Lumber
Conclusions

- Simulation-Optimization framework is a valuable tool in identifying market segments (industry segments, areas, company characteristics, etc.) in the NYC region where OPD might be useful.

- Simulation-Optimization framework is a tool that can demonstrate the effectiveness of OPD, and its impact on the transportation market in urban areas.
Acknowledgements

- Dissertation Advisor: Jose Holguín-Veras, Ph.D., P.E. (Rensselaer Polytechnic Institute)
- Professional Advisor: Mr. Nathan Erlbaum (NYSDOT)
- September 11th Fellowship Program Director: Mr. Todd Goldman
Questions???