Marine Emissions Reduction Opportunities Cross Sound Ferry Repowering

January 20, 2009

Disclaimer

No part of this document may be reproduced or printed by any means without the express written consent of M.J. Bradley & Associates, LLC (MJB&A). This document contains valuable work product, and no part thereof may be lent, sold or otherwise transferred without the written approval of MJB&A.

While every effort has been made to ensure the accuracy of the information and images contained herein, MJB&A cannot be held accountable for any errors or omissions, or for damages of any kind arising out of or related to the use of this document.

Today's Agenda

- The need for emissions reduction
- Marine vessel emissions
- Marine emissions reduction options
 - Retrofit
 - Repower
- Marine emissions reduction programsPANYNJ
 - Cross Sound Ferry Repower

Need for Emissions Reductions

NY-NJ-CT-LI Nonattainment Area

Must reduce both NO_x and PM to achieve attainment with NAAQS

- Particular concern with diesel PM due to significant negative health effects
 - Asthma
 - Premature mortality

Why Focus on Marine Emissions?

300,000 2007 Locomotive = 12% of PM Marine = 7% of PM 250,000 NEXT 20 YRS: 200,000 Stricter Tons per Year 2030 Standards for Locomotive = 34% of PM 150,000 Marine = 25% of PM onroad trucks 100,000 and nonroad equipment will 50,000 produce significant 0 reductions as 2009 2011 2013 2015 2017 2019 -0²³ 2025 2021 2022 2007 2022 the fleets turn On-Road Non-Road Marine Locomotive over

PROJECTED U.S. MOBILE SOURCE PM EMISSIONS

Marine & locomotive sectors will dominate remaining diesel PM sources

Types of Marine Vessels

Very large, unique diesel engines, 10,000 – 100,000 hp
Burn heavy, residual "bunker fuel"

▶ No emissions retrofit options exist for these vessels

M.J. BRADLEY & ASSOCIATES LLC A Climate Change Capital Group Company

Coastal Vessels (Tugs, Ferries, Fishing/Work Boats)

- Use locomotive or large construction-type diesel engines, 500 – 4000 hp
- Typically burn #2 distillate fuel
- Can operate for 5,000 hrs per year or more, and burn more than 500,000 gallons of fuel annually
- Many in-use vessels have unregulated, Tier 0 engines
- Both retrofit and repowering options exist for these vessels

Marine Vessel Emissions Inventory

New York Harbor

	VE	SSEL TYPE	Number	Annual Emissions (tons)		
CMVEI: New York Harbor Vessel Inventory, 2000				NOx	РМ	
	Ocean-going		1,425	4,139	234	
	Coastal Vessels	Ferries	42	1,484	38	
		Tug Boats	122	5,024	191	
		Excursion Vessels	25	871	22	
		Government	25	168	5	

Coastal vessels are less numerous but have greater effect on local air quality because they are generally captive to a region

Emissions Reduction Opportunities

Coastal Marine Vessels

- Many vessels with older, unregulated engines but significant remaining life
- Significant contributor to diesel emissions inventory in port cities (i.e. NYC)
 - Individual vessels are significant sources (High HP, high load factor, high annual usage)
 - Captive to a specific region
- Cost-effective reduction options are available
 - Repower and/or DOC retrofit
- Improved fuel economy of new engines (repower) provides significant CO₂/GHG co-benefits

Coastal vessels are some of the most effective and cost-effective targets for NO_x and PM reduction efforts

Cost Effective Emissions Reductions

TO REDUCE ~4 ANNUAL TONS OF PM:

- Repower 1 3000 HP marine vessel: \$ 950,000
- Retrofit 20 switcher locomotives with DOC: \$1,000,000
 - or

Retrofit 100 -200 construction engines with DPF: \$1,000,000+

or

Retrofit 200 - 400 onroad trucks with DPF: \$1,700,000+

A marine engine repower will also reduce NO_x and CO_2 significantly, while the other approaches do not

Coastal Marine Vessels

PM Retrofit Options

- Passive DPFs are generally not commercially available for marine engines
 - Active DPFs are available, but have mostly been installed in Europe, in conjunction with SCR
- DOCs are becoming available for marine engines, though there have been relatively few installations to date
 - ► A DOC will reduce PM by 25% and VOC by 25%
 - A DOC for a 3000 hp marine engine will cost approximately \$50,000

Marine DOC

Coastal Marine Vessels

Changing EPA Emission Standards

Category 2 Marine Engines <3700 kw & 7-15 liters/cylinder

Current availability of cleaner Tier 2 engines opens up an opportunity to achieve significant emissions reductions by repowering older vessels

First Applied (Model Year)	Emissions Limits (g/kwh)		
	NOx+HC	PM	
Prior to 2004	~20.0	~0.70	
2004	11.5	~.50	
2007	7.8	0.27	
2013	6.2	0.14	
2016	1.8	0.04	
	First Applied (Model Year) Prior to 2004 2004 2007 2013 2016	First Applied (Model Year)Emissions (g/kwlNOx+HCPrior to 2004~20.0200411.520077.820136.220161.8	

New Tier 2 vs. Older Marine Engines

Technical changes yield lower emissions

- Electronic fuel control (lower NO_x & PM; lower fuel consumption)
- Better piston rings for lower lube oil consumption (lower PM)
- Improved turbocharger (lower NO_x and PM)

Improved charge-air cooling (lower NO_x)

Tier 2 engines generally DO NOT use after-treatment. Adding a DOC to a repower yields even greater PM reductions

Coastal Marine Vessels

Repowering

- Many in-use marine vessels have unregulated Tier 0 engines
- Cleaner, Tier 2-compliant engines are now available
 - ▶ 66% lower PM and VOC emissions than Tier 0
 - ▶ 25% lower NOx emissions than Tier 0
 - ▶ 8 12% lower fuel use than Tier 0
- Repowering a marine vessel with a new 3000 hp Tier 2 engine will cost approximately \$1,000,000
- Annual fuel savings for a large tug will pay back repowering costs in 7 – 8 years
 - Many vessel owners will repower if given a 50% capital subsidy (4 year pay back on owner's costs)

Coastal Marine Vessels

Repowering Process

Comparing Emissions Reduction Projects

Project Type		Reductions [tpy/unit]			Project Cost	NOx & VOC	PM _{2.5} Offset
		РМ	NOx	VOC	[\$/unit]	Offset Value* [\$/unit]	<u>Cost</u> [\$/tpy]
	Marine Repower + DOC	1.26	27.0	2.0	\$350,000 **	\$290,000	\$47,000
	Marine Vessel DOC Retrofit	0.63	-	0.98	\$50,000	\$9,800	\$64,000
	LH Locomotive DOC Retrofit	0.29	-	0.65	\$50,000	\$6,500	\$150,000
Vehicle Retrofit & Repower Options	Switcher Loco DOC Retrofit	0.19	-	0.19	\$50,000	\$1,900	\$250,000
	Gen-set Switcher Loco	0.73	12.1	0.73	\$825,000	\$128,300	\$950,000
	Onroad Vehicle Retrofits	0.02	0.7	0.04	Up to \$20,000	Up to \$7,000	\$0.3 - \$29 mill
	Construction Retrofits	0.04	-	0.04	Up to \$25,000	Up to \$5,000	\$0.3 - \$2.8 mill
	Cruise Ship Shore Power	6.5	95.3	6.5	\$8 - \$16 mill	\$1 million	\$0.7 - \$1.6 mill
Idle Reduction Options	Switcher Locomotive	0.04	1.3	0.04	\$20,000***	\$13,400	\$165,000
	Sleeper Cab-equipped Truck	0.01	0.3	0.01	\$5,000***	\$3,100	\$190,000

Assumes that NOx and VOC offsets have a value of \$10,000/tpy

** Assumes a capital cost subsidy high enough to provide vessel owner a 4-yr pay back based on annual fuel savings.

*** Assumes a capital cost subsidy high enough to provide vehicle owner a 1-yr pay back based on annual fuel savings

M.J. BRADLEY & ASSOCIATES LLC

A Climate Change Capital Group Company

PANYNJ Marine Reduction Programs

- The Port of NY & NJ is located in an ozone Non-Attainment Area
- Dredging activities to deepen shipping channels will result in NOx emissions of ~100 tpy to ~700 tpy
- NOx reductions are required to offset the dredging emissions
- Desire to reduce emissions from sources geographically and chronologically coincident
- PANYNJ has funded marine emissions reduction programs
 - Staten Island Ferry Retrofit/Upgrade
 - Commercial marine engine replacements

Staten Island Ferry

Alice Austen SCR Demo

- Proof of concept demonstration
- Retrofit Alice Austen with
 - Selective Catalytic Reduction (SCR)
 - Diesel Oxidation catalyst (DOC)
- Applied to two CAT 3516 main engines
- Requires urea reductant
 - ▶ 32% solution in water
- ~70% NOx reduction and 25% PM reduction

Staten Island Ferry

Engine Upgrades

Vessel	Technology	N(Redu	Ox Iction	PM Reduction	
			%	(tpy)	%
Barberi	Tier 1 upgrade	124	48%	0	0%
Newhouse	Tier 1 upgrade	124	48%	0	0%
Kennedy	Tier 1 upgrade w/ UL	96	42%	2.3	30%
Molinari	Tier 2 upgrade w/ UL	70	32%	4.0	44%
Marchi	Tier 2 upgrade w/ UL	70	32%	4.0	44%
Spirit of America	Tier 2 upgrade w/ UL	70	32%	4.0	44%
	TOTAL	554		14.3	

Completed

Planned

Marine Engine Replacement

Tugs & Excursion Vessels

CIRCLE LINE

M.J. BRADLEY & ASSOCIATES LLC A Climate Change Capital Group Company

	Program	Number of Vessels	Annual NOx Reduction	Average Cost
(Second			(ton)	(\$/ton)
	KVK Tugs	2	51	\$1,620
RYALICE 000	TERP	3	171	\$1,170
	MVERP	8	177	\$1,550
	MVERP2	10 ± *	240±*	\$1,400±*
	TOTAL	23	643	\$1,400
	× C 1	• • • • • •	1 1 1	1 . 1 .

* *Currently projected totals; no awards have been made to date.*

PANYNJ pays for up to 100% of new engine cost – owner pays for installation

19

Potential Marine Vessel Projects

MAJOR FERRY & TUG FLEETS IN THE NORTHEAST

Requirements for a Successful Project

FUNDING

NYMTC?

Cross Sound Ferry

Proposed Repower Project

- Repower up to three vessels with new Tier 2+ engines
 - Include DOC as part of repower
- Total cost \$8 million
 - Cross Sound Ferry to provide 50% of total cost
 - Need to find \$1 million in grant funding for each vessel
- Will significantly reduce annual emissions
 - ▶ 202 tons NO_x
 - ▶ 12.0 tons PM
 - 2,700 tons CO₂

Cross Sound Ferry - Overview

- Passenger and vehicle ferry service between New London, CT and Orient Point, NY
 - Carry passenger cars and heavy commercial trucks
- Fleet consists of 8 vessels
 - 7 passenger and vehicle service ferries
 - 1 high-speed ferry
- Each one-way trip covers a distance of 16 miles and takes approximately 1 hour and 20 minutes

- Over 12,000 annual one-way trips
- Over 2 million gallons of diesel fuel used annually

Cross Sound Ferry Service

Cross Sound Ferry Fleet

		HP	CAPACITY	
VESSEL NAME	ENGINES		CARS	PASS
MARY ELLEN	(2) Caterpillar 3516	1,550 each	85	675
SUSAN ANNE	(2) EMD 12-645E7B	2,300 each	80	840
CAPE HENLOPEN	(2) EMD 12-645E2	1,500 each	90	900
JOHN H	(2) EMD 12-645E2	1,500 each	120	1,000
NEW LONDON	(2) Cummins KTA38MZ	1,200 each	60	300
NORTH STAR	(2) Caterpillar D398	900 each	35	300
CARIBBEAN	(2) DDC 12-71	360 each	22	120
SEA JET	(2) Deutz 620	2,500 each	0	400

REPOWER CANDIDATES CURRENTLY BEING REPOWERED

Cross Sound Ferry

Potential Repower Emissions Savings

VESSEI	NOx (tons/year)			PM (tons/year)		
VESSEL	Current	After Repower	Savings	Current	After Repower	Savings
JOHN H	141	48	93	4.4	0.5	3.9
MARY ELLEN	58	31	27	3.2	0.3	2.9
SUSAN ANNE	58	31	27	3.2	0.3	2.9
CAPE HENLOPEN	84	29	55	2.6	0.3	2.3
TOTAL	341	139	202	13.4	1.4	12.0

Cross Sound Ferry

Repower Cost Effectiveness - Example

Vessel Mary Ellen :

Replace:

(2) EMD 12645H engines

with

(2) GE 1250 engines

\$1,500,000 engines

\$ 50,000 DOCs

\$ 250,000 installation

\$ 200,000 Project Mgmnt
\$2,000,000 TOTAL

Annual Emissions Reductions:

NOx = 93 tonsPM = 3.9 tons

Cost of Reductions:

Project Cost:	\$2 million
<u>– Cost Share</u>	<u>\$1 million</u>
REQUESTED FUNDING:	\$1 million
<u>– Value of NOx*</u>	\$930,000

COST OF PM REDUCED \$70,000

\$70,000 ÷ 2.9 tpy **= \$24,000/tpy PM**

* Assuming a market value of \$10,000/tpy for NOx

Cross Sound Ferry Repower

Reasons for NYMTC Support

- Enforceable, localized PM & NOx reductions
 - Repowered vessels will (can) not leave the region
- Manageable & cost effective
 - Large reductions from a small number of vehicles (similar to a stationary source)
 - Pay back to operator from fuel savings limits grant funding required to make a voluntary program work
- CSF supports CMAQ congestion mitigation goals
 - Reduced traffic through Manhattan to reach LI
- Not eligible for PANYNJ marine program funding
 - Not captive to NY Harbor

Contact M.J. Bradley & Associates

MJB&A Head Office

M.J. Bradley & Associates LLC 47 Junction Square Drive Concord, Massachusetts United States

Tel: 978 369 5533 Fax: 978 369 7712

www.mjbradley.com

MJB&A New Hampshire Office

M.J. Bradley & Associates LLC 1000 Elm Street, 2nd Floor Manchester, New Hampshire United States

Tel: 603 647 5746 Fax: 603 647 0929

