Marine Emissions Reduction Opportunities

Cross Sound Ferry Repowering

January 20, 2009
Disclaimer

No part of this document may be reproduced or printed by any means without the express written consent of M.J. Bradley & Associates, LLC (MJB&A). This document contains valuable work product, and no part thereof may be lent, sold or otherwise transferred without the written approval of MJB&A.

While every effort has been made to ensure the accuracy of the information and images contained herein, MJB&A cannot be held accountable for any errors or omissions, or for damages of any kind arising out of or related to the use of this document.
Today’s Agenda

- The need for emissions reduction
- Marine vessel emissions
- Marine emissions reduction options
 - Retrofit
 - Repower
- Marine emissions reduction programs
 - PANYNJ
 - Cross Sound Ferry Repower
Need for Emissions Reductions

NY-NJ-CT-LI Nonattainment Area

- Must reduce both NO\textsubscript{x} and PM to achieve attainment with NAAQS
- Particular concern with diesel PM due to significant negative health effects
 - Asthma
 - Premature mortality
Why Focus on Marine Emissions?

NEXT 20 YRS:

Stricter Standards for onroad trucks and nonroad equipment will produce significant reductions as the fleets turn over.

Marine & locomotive sectors will dominate remaining diesel PM sources.
Types of Marine Vessels

Ocean-Going Vessels (Cruise Ships, Tankers, Cargo)
- Very large, unique diesel engines, 10,000 – 100,000 hp
- Burn heavy, residual “bunker fuel”
- *No emissions retrofit options exist for these vessels*

Coastal Vessels (Tugs, Ferries, Fishing/Work Boats)
- Use locomotive or large construction-type diesel engines, 500 – 4000 hp
- Typically burn #2 distillate fuel
- Can operate for 5,000 hrs per year or more, and burn more than 500,000 gallons of fuel annually
- Many in-use vessels have unregulated, Tier 0 engines
- *Both retrofit and repowering options exist for these vessels*
Marine Vessel Emissions Inventory

New York Harbor

<table>
<thead>
<tr>
<th>VESSEL TYPE</th>
<th>Number</th>
<th>Annual Emissions (tons)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td>PM</td>
</tr>
<tr>
<td>Ocean-going</td>
<td>1,425</td>
<td>4,139</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Coastal Vessels</td>
<td></td>
<td>Ferries</td>
<td>1,484</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tug Boats</td>
<td>5,024</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excursion Vessels</td>
<td>871</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Government</td>
<td>168</td>
<td>5</td>
</tr>
</tbody>
</table>

Coastal vessels are less numerous but have greater effect on local air quality because they are generally captive to a region.
Emissions Reduction Opportunities

Coastal Marine Vessels

- Many vessels with older, unregulated engines but significant remaining life
- Significant contributor to diesel emissions inventory in port cities (i.e. NYC)
 - Individual vessels are significant sources (High HP, high load factor, high annual usage)
 - Captive to a specific region
- Cost-effective reduction options are available
 - Repower and/or DOC retrofit
- Improved fuel economy of new engines (repower) provides significant CO$_2$/GHG co-benefits

Coastal vessels are some of the most effective and cost-effective targets for NO$_x$ and PM reduction efforts
Cost Effective Emissions Reductions

TO REDUCE ~4 ANNUAL TONS OF PM:

- Repower 1 3000 HP marine vessel: $950,000
- Retrofit 20 switcher locomotives with DOC: $1,000,000
- Retrofit 100 - 200 construction engines with DPF: $1,000,000+
- Retrofit 200 - 400 onroad trucks with DPF: $1,700,000+

A marine engine repower will also reduce NOx and CO2 significantly, while the other approaches do not.
Coastal Marine Vessels

PM Retrofit Options

- Passive DPFs are generally not commercially available for marine engines
 - Active DPFs are available, but have mostly been installed in Europe, in conjunction with SCR
- DOCs are becoming available for marine engines, though there have been relatively few installations to date
 - A DOC will reduce PM by 25% and VOC by 25%
 - A DOC for a 3000 hp marine engine will cost approximately $50,000
Coastal Marine Vessels

Changing EPA Emission Standards

Current availability of cleaner Tier 2 engines opens up an opportunity to achieve significant emissions reductions by repowering older vessels.

<table>
<thead>
<tr>
<th>New Engine Standard</th>
<th>First Applied (Model Year)</th>
<th>Emissions Limits (g/kwh)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unregulated</td>
<td>Prior to 2004</td>
<td>~20.0</td>
<td>~0.70</td>
</tr>
<tr>
<td>EPA Tier 1 (IMO)</td>
<td>2004</td>
<td>11.5</td>
<td>~.50</td>
</tr>
<tr>
<td>EPA Tier 2</td>
<td>2007</td>
<td>7.8</td>
<td>0.27</td>
</tr>
<tr>
<td>EPA Tier 3</td>
<td>2013</td>
<td>6.2</td>
<td>0.14</td>
</tr>
<tr>
<td>EPA Tier 4</td>
<td>2016</td>
<td>1.8</td>
<td>0.04</td>
</tr>
</tbody>
</table>
New Tier 2 vs. Older Marine Engines

Technical changes yield lower emissions

- Electronic fuel control (*lower NO\textsubscript{x} & PM; lower fuel consumption*)
- Better piston rings for lower lube oil consumption (*lower PM*)
- Improved turbocharger (*lower NO\textsubscript{x} and PM*)
- Improved charge-air cooling (*lower NO\textsubscript{x}*).

Tier 2 engines generally DO NOT use after-treatment. Adding a DOC to a repower yields even greater PM reductions.
Coastal Marine Vessels

Repowering

- Many in-use marine vessels have unregulated Tier 0 engines
- Cleaner, Tier 2-compliant engines are now available
 - 66% lower PM and VOC emissions than Tier 0
 - 25% lower NOx emissions than Tier 0
 - 8 – 12% lower fuel use than Tier 0
- Repowering a marine vessel with a new 3000 hp Tier 2 engine will cost approximately $1,000,000
- Annual fuel savings for a large tug will pay back repowering costs in 7 – 8 years
 - Many vessel owners will repower if given a 50% capital subsidy (4 year pay back on owner’s costs)
Coastal Marine Vessels

Repowering Process

Replacing engines

Acceptance tests

Destroying Old Engines
Comparing Emissions Reduction Projects

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Reductions [tpy/unit]</th>
<th>Project Cost [$/unit]</th>
<th>NOx & VOC Offset Value* [$/unit]</th>
<th>PM$_{2.5}$ Offset Cost [$/tpy]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Retrofit & Repower Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Repower + DOC</td>
<td>1.26 27.0 2.0</td>
<td>$350,000 **</td>
<td>$290,000</td>
<td>$47,000</td>
</tr>
<tr>
<td>Marine Vessel DOC Retrofit</td>
<td>0.63 - 0.98</td>
<td>$50,000</td>
<td>$9,800</td>
<td>$64,000</td>
</tr>
<tr>
<td>LH Locomotive DOC Retrofit</td>
<td>0.29 - 0.65</td>
<td>$50,000</td>
<td>$6,500</td>
<td>$150,000</td>
</tr>
<tr>
<td>Switcher Loco DOC Retrofit</td>
<td>0.19 - 0.19</td>
<td>$50,000</td>
<td>$1,900</td>
<td>$250,000</td>
</tr>
<tr>
<td>Gen-set Switcher Loco</td>
<td>0.73 12.1 0.73</td>
<td>$825,000</td>
<td>$128,300</td>
<td>$950,000</td>
</tr>
<tr>
<td>Onroad Vehicle Retrofits</td>
<td>0.02 0.7 0.04</td>
<td>Up to $20,000</td>
<td>Up to $7,000</td>
<td>$0.3 - $29 mill</td>
</tr>
<tr>
<td>Construction Retrofits</td>
<td>0.04 - 0.04</td>
<td>Up to $25,000</td>
<td>Up to $5,000</td>
<td>$0.3 - $2.8 mill</td>
</tr>
<tr>
<td>Cruise Ship Shore Power</td>
<td>6.5 95.3 6.5</td>
<td>$8 - $16 mill</td>
<td>$1 million</td>
<td>$0.7 - $1.6 mill</td>
</tr>
<tr>
<td>Idle Reduction Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switcher Locomotive</td>
<td>0.04 1.3 0.04</td>
<td>$20,000***</td>
<td>$13,400</td>
<td>$165,000</td>
</tr>
<tr>
<td>Sleeper Cab-equipped Truck</td>
<td>0.01 0.3 0.01</td>
<td>$5,000***</td>
<td>$3,100</td>
<td>$190,000</td>
</tr>
</tbody>
</table>

* Assumes that NOx and VOC offsets have a value of $10,000/tpy
** Assumes a capital cost subsidy high enough to provide vessel owner a 4-yr pay back based on annual fuel savings.
*** Assumes a capital cost subsidy high enough to provide vehicle owner a 1-yr pay back based on annual fuel savings.
The Port of NY & NJ is located in an ozone Non-Attainment Area

Dredging activities to deepen shipping channels will result in NOx emissions of ~100 tpy to ~700 tpy

NOx reductions are required to offset the dredging emissions

Desire to reduce emissions from sources geographically and chronologically coincident

PANYNJ has funded marine emissions reduction programs

- Staten Island Ferry Retrofit/Upgrade
- Commercial marine engine replacements
Staten Island Ferry

Alice Austen SCR Demo

- Proof of concept demonstration
- Retrofit Alice Austen with
 - Selective Catalytic Reduction (SCR)
 - Diesel Oxidation catalyst (DOC)
- Applied to two CAT 3516 main engines
- Requires urea reductant
 - 32% solution in water
- ~70% NOx reduction and 25% PM reduction
Engine Upgrades

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Technology</th>
<th>NOx Reduction (tpy)</th>
<th>NOx Reduction (%)</th>
<th>PM Reduction (tpy)</th>
<th>PM Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barberi</td>
<td>Tier 1 upgrade</td>
<td>124</td>
<td>48%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Newhouse</td>
<td>Tier 1 upgrade</td>
<td>124</td>
<td>48%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Kennedy</td>
<td>Tier 1 upgrade w/ UL</td>
<td>96</td>
<td>42%</td>
<td>2.3</td>
<td>30%</td>
</tr>
<tr>
<td>Molinari</td>
<td>Tier 2 upgrade w/ UL</td>
<td>70</td>
<td>32%</td>
<td>4.0</td>
<td>44%</td>
</tr>
<tr>
<td>Marchi</td>
<td>Tier 2 upgrade w/ UL</td>
<td>70</td>
<td>32%</td>
<td>4.0</td>
<td>44%</td>
</tr>
<tr>
<td>Spirit of America</td>
<td>Tier 2 upgrade w/ UL</td>
<td>70</td>
<td>32%</td>
<td>4.0</td>
<td>44%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>554</td>
<td></td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

Completed **Planned**
Marine Engine Replacement

Tugs & Excursion Vessels

<table>
<thead>
<tr>
<th>Program</th>
<th>Number of Vessels</th>
<th>Annual NOx Reduction (ton)</th>
<th>Average Cost ($/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KVK Tugs</td>
<td>2</td>
<td>51</td>
<td>$1,620</td>
</tr>
<tr>
<td>TERP</td>
<td>3</td>
<td>171</td>
<td>$1,170</td>
</tr>
<tr>
<td>MVERP</td>
<td>8</td>
<td>177</td>
<td>$1,550</td>
</tr>
<tr>
<td>MVERP2</td>
<td>10±*</td>
<td>240±*</td>
<td>$1,400±*</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23</td>
<td>643</td>
<td>$1,400</td>
</tr>
</tbody>
</table>

* Currently projected totals; no awards have been made to date.

PANYNJ pays for up to 100% of new engine cost – owner pays for installation
Potential Marine Vessel Projects

MAJOR FERRY & TUG FLEETS IN THE NORTHEAST
Requirements for a Successful Project

WILLING PARTNER

Cross Sound Ferry

FUNDING

NYMTC?

VIABLE & COST EFFECTIVE TECHNOLOGY

Marine Repower
Cross Sound Ferry

Proposed Repower Project

- Repower up to three vessels with new Tier 2+ engines
 - Include DOC as part of repower
- Total cost - $8 million
 - Cross Sound Ferry to provide 50% of total cost
 - Need to find $1 million in grant funding for each vessel
- Will significantly reduce annual emissions
 - 202 tons NO$_x$
 - 12.0 tons PM
 - 2,700 tons CO$_2$
Cross Sound Ferry - Overview

- Passenger and vehicle ferry service between New London, CT and Orient Point, NY
 - Carry passenger cars and heavy commercial trucks
- Fleet consists of 8 vessels
 - 7 passenger and vehicle service ferries
 - 1 high-speed ferry
- Each one-way trip covers a distance of 16 miles and takes approximately 1 hour and 20 minutes
- Over 12,000 annual one-way trips
- Over 2 million gallons of diesel fuel used annually
Cross Sound Ferry Service
Cross Sound Ferry Fleet

<table>
<thead>
<tr>
<th>VESSEL NAME</th>
<th>ENGINES</th>
<th>HP</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CARS</td>
<td>PASS</td>
</tr>
<tr>
<td>MARY ELLEN</td>
<td>(2) Caterpillar 3516</td>
<td>1,550 each</td>
<td>85</td>
</tr>
<tr>
<td>SUSAN ANNE</td>
<td>(2) EMD 12-645E7B</td>
<td>2,300 each</td>
<td>80</td>
</tr>
<tr>
<td>CAPE HENLOPEN</td>
<td>(2) EMD 12-645E2</td>
<td>1,500 each</td>
<td>90</td>
</tr>
<tr>
<td>JOHN H</td>
<td>(2) EMD 12-645E2</td>
<td>1,500 each</td>
<td>120</td>
</tr>
<tr>
<td>NEW LONDON</td>
<td>(2) Cummins KTA38MZ</td>
<td>1,200 each</td>
<td>60</td>
</tr>
<tr>
<td>NORTH STAR</td>
<td>(2) Caterpillar D398</td>
<td>900 each</td>
<td>35</td>
</tr>
<tr>
<td>CARIBBEAN</td>
<td>(2) DDC 12-71</td>
<td>360 each</td>
<td>22</td>
</tr>
<tr>
<td>SEA JET</td>
<td>(2) Deutz 620</td>
<td>2,500 each</td>
<td>0</td>
</tr>
</tbody>
</table>

REPOWER CANDIDATES
CURRENTLY BEING REPOWERED
Cross Sound Ferry

Potential Repower Emissions Savings

<table>
<thead>
<tr>
<th>VESSEL</th>
<th>NOx (tons/year)</th>
<th>PM (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current</td>
<td>After Repower</td>
</tr>
<tr>
<td>JOHN H</td>
<td>141</td>
<td>48</td>
</tr>
<tr>
<td>MARY ELLEN</td>
<td>58</td>
<td>31</td>
</tr>
<tr>
<td>SUSAN ANNE</td>
<td>58</td>
<td>31</td>
</tr>
<tr>
<td>CAPE HENLOOPEN</td>
<td>84</td>
<td>29</td>
</tr>
<tr>
<td>TOTAL</td>
<td>341</td>
<td>139</td>
</tr>
</tbody>
</table>
Cross Sound Ferry

Repower Cost Effectiveness - Example

Vessel Mary Ellen:

Replace:

(2) EMD 12645H engines
with
(2) GE 1250 engines

$1,500,000 engines
$ 50,000 DOCs
$250,000 installation
$200,000 Project Mgmnt
$2,000,000 TOTAL

Annual Emissions Reductions:
NOx = 93 tons
PM = 3.9 tons

Cost of Reductions:

Project Cost: $2 million
— Cost Share $1 million
REQUESTED FUNDING: $1 million
— Value of NOx* $930,000

COST OF PM REDUCED $ 70,000

$70,000 ÷ 2.9 tpy = $24,000/tpy PM

* Assuming a market value of $10,000/tpy for NOx
Cross Sound Ferry Repower

Reasons for NYMTC Support

- Enforceable, localized PM & NOx reductions
 - Repowered vessels will (can) not leave the region
- Manageable & cost effective
 - Large reductions from a small number of vehicles (similar to a stationary source)
 - Pay back to operator from fuel savings limits grant funding required to make a voluntary program work
- CSF supports CMAQ congestion mitigation goals
 - Reduced traffic through Manhattan to reach LI
- Not eligible for PANYNJ marine program funding
 - Not captive to NY Harbor
Contact M.J. Bradley & Associates

MJB&A Head Office
M.J. Bradley & Associates LLC
47 Junction Square Drive
Concord, Massachusetts
United States
Tel: 978 369 5533
Fax: 978 369 7712
www.mjbradley.com

MJB&A New Hampshire Office
M.J. Bradley & Associates LLC
1000 Elm Street, 2nd Floor
Manchester, New Hampshire
United States
Tel: 603 647 5746
Fax: 603 647 0929