

Billgeville's new pedestrian monkey bars not only reduced accidents but also whipped people into great shape.

STREET CROSSINGS

Module 4

Part 2: Countermeasures

Learning Outcomes

- 2
- At the end of this module, you will be able to:
- Identify which crossing technique is appropriate
- Ensure oft-requested solutions (crosswalks, signals, pedestrian bridges) are effective:
 - Concerned citizens and elected officials often respond to a tragic pedestrian crash asking for an immediate solution, which may or may not be appropriate.
 - This module explains why some countermeasures work, and why others don't.

Basic Street Crossing Techniques

- Crosswalks
- Illumination
- Signs
- Striping
- Medians/pedestrian islands
- □ Signals
- Over/undercrossings

Crosswalks

Crosswalk FAQ's:

- Why are they marked?
- Where should they be marked?
- Do marked crosswalks increase safety, or provide a "false sense of security?"

1. Why are crosswalks markings provided?

- University Place WA
 - To indicate to pedestrians where to cross
- To indicate to drivers where to expect pedestrians
- At mid-block locations, crosswalk markings legally establish the crosswalk.

2. How to determine where to mark a crosswalk?

- Crosswalk markings are commonly used to guide pedestrians and alert other road users of pedestrians at signalized locations and approaches controlled by STOP or YIELD signs
- An engineering study should be performed before crosswalk markings are installed at locations away from traffic signals or STOP signs. (MUTCD Section 3B.18)

2. How to determine where to mark a crosswalk?

Corvallis OR

Consider origins and destinations

In this case, apartments across from bus stop & stores

Not Suitable Location for a Marked Crosswalk

8

9 Corvallis OR

Not a good location for a marked crosswalk:

□ No consistent place where pedestrians cross

10 Clatskanie OR

□ Not a good location for a marked crosswalk:

Poor sight distance

Suitable Locations for a Marked Crosswalk

11

12 Madison WI

- Suitable location for a marked crosswalk:
- □ Two-lane, high use, driver expectancy

13 Washington DC

- Suitable location for a marked crosswalk:
- □ Slow speed, high use, driver expectancy

3. Looking or Not Looking?

14 Madison WI

Do marked crosswalks increase safety, or encourage people to cross without looking?

Results of Most Recent Study (Zegeer et al 2005)

15

- Marked vs. Unmarked Analysis
- □ Speeds < or = to 40 mph
 - Two-lane roads: No significant difference in crash rate
 - Multilane roads (3 or more lanes)
 - Under 12,000 ADT: no significant difference in crash rate
 - Over 12,000 ADT w/ no median: crashes marked > crashes unmarked
 - Over 15,000 ADT & w/ median: crashes marked > crashes unmarked

16

- Median reduces crashes by 40%
- Pedestrians over 65 are over-represented in crosswalk crashes
- Pedestrians are not less
 vigilant in marked
 crosswalks:
 - Looking behavior increased after crosswalks installed

Study Results

17 Atlanta GA

□ Crashes correlate with ADT & number of travel lanes.

Other studies have shown similar results

One explanation of higher crash rate at marked crosswalks: multiple-threat crash

1 st car stops too close, masks visibility for driver in 2nd lane Solution: advance stop bar (comes later...)

Text in the 2009 MUTCD

- New marked crosswalks alone, without other measures designed to reduce traffic speeds, shorten crossing distances, enhance driver awareness of the crossing, and/or provide active warning of pedestrian presence, should not be installed across uncontrolled roadways where the speed limit exceeds 40 mph or either:
 - Has 4 or more lanes without a raised median or island and ADT of 12,000 or more, or
 - 4 or more lanes with raised median island and ADT of 15,000 or more

(2009 MUTCD Section 3B.18)

Increase Effectiveness Of Crosswalks With:

- Proper location
- High Visibility Markings
- Illumination
- □ Signing
- Advance Stop Bars
- Median Islands
- Curb Extensions
- Signals

Key Quotes from the Study Conclusion

- "When considering marked crosswalks at uncontrolled locations, the question should not be simply, "Should I provide a marked crosswalk or not?"...
- "Regardless of whether marked crosswalks are used, there remains the fundamental obligation to get pedestrians safely across the street. In most cases, marked crosswalks are best used in combination with other treatments (e.g., curb extensions, raised crossing islands, traffic signals, roadway narrowing, enhanced overhead lighting, traffic calming measures)....
- "In all cases, the final design must accomplish the goal of getting pedestrians across the road safely...."
- "The design question is, "How can this task [getting pedestrians across the road safely] best be accomplished?"

22

Discussion:

What are your policies & practices regarding marked crosswalks?

Marked crosswalk must be visible to the DRIVER

What the pedestrian sees

Marked crosswalk must be visible to the DRIVER

24

What the driver sees

(same crosswalk)

Crosswalk Visibility

25

Crosswalk Marking Types

Crosswalk Visibility

26

Longitudinal markings are more visible to driver from afar

27 Salem OR

Longitudinal markings with transverse markings – very visible

28 Corvallis & Sweet Home OR

Place longitudinal markings to avoid wheel tracks, reducing wear & tear & maintenance

29 Sweet Home OR

Staggered markings improve visibility from afar

Textured crosswalks: How effective are they?

In theory, more visible. Reality?

31 Corvallis OR

What the pedestrian sees

32 Corvallis OR

What the driver sees

33

- Brick crosswalks: prone to failure
- Difficult for wheelchair users

Mitigation Measures For Colored Crosswalks

34

Supplement textured crosswalks with white lines to increase visibility

36 Orlando, FL

Brick street with (asphalt-coated) concrete crosswalk

37 Treasure Island FL

 Checkerboard pattern created by alternating brushed concrete with exposed aggregate (use fine rock)

38 St Paul MN

Idea: imbed white crosswalk within contrasting color

39 St Paul MN

Driver perspective: crosswalks show up well

Raised Crosswalks

Figure 6. Raised crosswalk and overhead flasher, Towerview Drive, Durham, North Carolina.

- FHWA Study "The Effects of Traffic Calming Measures on Pedestrian and Motorist Behavior" -2001
- Increase pedestrian visibility & likelihood the driver yields to pedestrians especially <u>when</u> <u>combined with an overhead flashing</u> <u>light</u>
- Most appropriate on low speed local or neighborhood streets
- Should not be used on emergency routes, bus routes, or high speed streets
- Drainage of storm water runoff and snow plowing considerations may also be a concern with raised crosswalks

Table 8.	Comparison of	f Vehicle Speeds at the	Treatment and Control Sites.
----------	---------------	-------------------------	------------------------------

Raised Crosswalk

CITY AND TREATMENT	50TH PERCENTILE SPEED TREATMENT SITE	50TH PERCENTILE SPEED CONTROL SITE	DIFFERENCE IN SPEEDS
Durham, NC – Research Drive Raised crosswalk	33.3 km/h (20.7 mi/h)	39.8 km/h (24.7 mi/h)	6.5 km/h (4.0 mi/h) <i>lower</i> at treatment site SIGNIFICANT ¹
Durham, NC – Towerview Drive Raised crosswalk & overhead flasher	18.5 km/h (11.5 mi/h)	38.4 km/h (23.9 mi/h)	19.3 km/h (12.4 mi/h) <i>lower</i> at treatment site SIGNIFICANT
Montgomery County, MD ² Raised Crosswalk	34.6 km/h (21.5 mi/h)	38.6 km/h (24.0 mi/h)	4.0 km/h (2.5 mi/h) <i>lower</i> at treatment site NOT SIGNIFICANT

Significant at the 0.05 level or better, using a two-tailed test.

² Vehicle speeds in Montgomery County were measured only when the staged pedestrian was present

SITE AND TREATMENT	TREATMENT SITE	CONTROL SITE	SIGNIFICANC E
Durham, NC — Towerview Dr Raised crosswalk and overhead flasher	79.2% (159)*	31.4% (35)	• (0.000)
Montgomery County, MD Raised crosswalk	1.2% (169)	1.0% (198)	Ν

Illumination – Essential For Any Crossing

- Marked crosswalk?
 - Light it
- Up to 50% of pedestrian crashes occur at night

43 Corvallis OR

Lighting reduces the odds of pedestrian fatalities:

- by 42% at midblock locations
- by 54% at intersections

44

Ped shows up well in well-lit crosswalk

Informational Report on Lighting Design for Midblock Crosswalks

- 45
- □ FHWA-HRT-08-053
 - April 2008
 - Available at <u>http://www.tfhrc.gov/sa</u> <u>fety/pubs/08053/0805</u> <u>3.pdf</u>

Sample Illustrations from FHWA Report

Fig 11. Traditional midblock crosswalk lighting layout

Fig 12. New design for midblock crosswalk lighting layout

Recommended lighting level: 20 lux at 5' above pavement

Fig 15. New design for wide roadway intersection lighting layout for crosswalks

Ped crossing signs: old vs. new MUTCD standards

New

Placement

2009 MUTCD Sec. 2C.50 & Fig. 2C-10

49 Tampa FL

In-street pedestrian crossing signs

50 Tampa FL

In-street signs increase yield rates, especially on slow-speed streets

Pedestrian crossing sign with flashing beacon

51

College Station TX

Improves visibility of sign and crosswalk; CMF/CRF unknown

Rectangular Rapid Flash LED Beacon

52 Coconut Grove FL

- MUTCD Interim approval July 2008
 - Must submit a written request to the FHWA
 - http://mutcd.fhwa.dot.gov/resources/interim_approval/ia11/fhwamemo.htm
- Studies indicate motorist yield rates increased from about 20% to 80%
- Beacon is yellow, rectangular, and has a rapid "wig-wag" flash
- Beacon located between the warning sign and the arrow plaque
- Must be pedestrian activated (pushbutton or passive)

RRFB Video

4 St. Petersburg FL

Beacons required on the both right side and on the left side or in a median if practical

Advance Stop or Yield Line: Reduces Multiple-threat Crashes

55

Multiple Threat Crash Problem

- 56
- 1st car stops to let pedestrian cross, blocking sight lines
- 2nd car doesn't
 stop, hits
 pedestrian at high
 speed

Multiple Threat Crash Solution

- Advance stop or yield line
- 1st car stops further back, opening up sight lines
- 2nd car can be seen by pedestrian

Signing to go along with markings

MUTCD Sec. 2B.11 and Figure 2B-2

59 Milwaukee WI

Advance yield line (shark's teeth) & sign

• Consider double white lines for no passing 2009 MUTCD Section 3B.16 and Figure 3B-17

60 Portland OR

Advance stop line and sign

2009 MUTCD Section 3B.16

61 Las Vegas NV

20' to 50' setback (30' preferred for effectiveness)
 Prohibit parking between line and crosswalk

Marking a Crosswalk Summary

When is it OK to mark a crosswalk without other treatments on roads with speed limits <or =to 40 mph?

- 2-lane roads
- Multi-lane roads w/ ADT < 12,000 (no median)</p>
- Multi-lane roads w/ADT < 15,000 (median)</p>

How can you increase the effectiveness of marked crosswalks?

- Marked crosswalk: Add median, advance stop line
- Textured crosswalks: Smooth and white is best
- Signs: In road; supplement with striping
- □ In all cases (nighttime):Illumination!

Raised Medians And Islands

Significant crash reductions:

Marked crosswalks

□ CMF = 0.54 (CRF = 46%)

Unmarked crosswalks

□ CMF = 0.61 (CRF = 39%)

64

- Continuous raised median basic principle:
- □ Breaks long complex crossing into two simpler crossings

Step 1: look at traffic on left

Step 2: cross first half

Step 3: look at traffic on right

Step 4: cross second half

69 Honolulu HI

People figure out on their own how to use a median to cross in two steps

70 Atlanta GA

A flush median is not a refuge

71 Atlanta GA

Add a raised island

72

Crossing island at marked crosswalk - same principle:
 Breaks long complex crossing into two simpler crossings

73 Asheville NC

Option: stagger or angle cut-through so pedestrians face oncoming traffic before 2nd crossing

Angled cut through: Line up ends with crosswalk direction for the blind

Medians:

- □ Why do medians reduce pedestrian crashes?
 - They reduce crossing distance and break up an otherwise complex task into 2 simpler crossings
- □ What is the crash reduction factor?
 - At marked crosswalks CMF = 0.54 (CRF = 46%)
 - At unmarked crosswalks CMF = 0.61 (CRF = 39%)

76 Pedestrian Signal

MUTCD signal warrants

77

- 1. Eight-hour vehicle volume
- 2. Four-hour vehicle volume
- 3. Peak hour
- 4. Pedestrian volume*
- 5. School crossing*
- 6. Coordinated signal system
- 7. Crash experience*
- 8. Roadway network
- 9. Intersection near a grade (rail) crossing

* = potential ped warrant

2009 MUTCD Chapter 4C

Very difficult to meet pedestrian volume

warrant

Honolulu HI

78

You need many pedestrians

2009 MUTCD Pedestrian Volume Warrant for Speeds > than 35 mph

80 Washington DC

□ Provide a HOT response

Otherwise pedestrians won't wait for the light

81 Corvallis OR

If wait is too long, pedestrians will seek gaps

82 Corvallis OR

And then traffic waits for no reason

83 Pedestrian Signal

2-stage crossing increases effectiveness

and disrupts traffic less

1. Ped pushes button, waits, crosses to island

2. Ped crosses to island, proceeds to 2nd button

86

3. Ped on island – pushes button to finish crossing

Stage 1: Ped stops traffic in one direction

Stage 1: Ped crosses to median island

Stage 1 over: Traffic in one direction resumes

Stage 2: Ped stops traffic in other direction

Stage 2 over: Traffic resumes

Detail 1: Requires ped push button on island

Detail 2: Fences force peds to walk against on-coming traffic

Pedestrian Hybrid Beacon aka "HAWK" (High Intensity Activated Crosswalk)

2009 MUTCD Chapter 4F Pedestrian Hybrid Beacons

Hybrid Beacon Sequence

2009 MUTCD Section 4F.3

Pedestrian Hybrid Beacon Effectiveness

Table 21. Summary of motorist yielding compliance from three sources for red signal or beacon and active when present.

	TCRP D-08/NCHRP 3-71 Study						Other Studies		
	Compliance – Staged Pedestrian Crossing			Compliance – General Population Pedestrian			Compliance – Literature Review (from Table L-1)		
				Crossing					
Crossing	# of	Range	Average	# of	Range	Average	# of	Range	Average
Treatment	Sites	(%)	(%)	Sites	(%)	(%)	Sites	(%)	(%)
				nal or l			0.02		
Midblock Signal	2	97 to	99%	4	91 to	95%	NA	NA	NA
		100			98				
Half Signal	6	94 to	97%	6	96 to	98%	1	99	99%
		100		-	100				
HAWK Signal	5	94 to	97%	5	98 to	99%	1	93	93%
Beacon		100			100				
				When I	. cocure				
In-Roadway	NA	NA	NA	NA	NA	NA	11	8 to	66%
Warning Lights					_			100	
Overhead	3	29 to	47%	4	38 to	49%	10	13 to	52%
Flashing Beacon		73			62			91	
(Pushbutton									
Activation)									
~			21.00		<i>c</i> 1 .	(7)			
Overhead	3	25 to	31%	3	61 to	67%	NA	NA	74%
Flashing Beacon		43			73				
(Passive									
Activation)									

Excerpts from 2009 MUTCD Chapter 4F For Pedestrian Hybrid Beacons

- 97
 - The CROSSWALK STOP ON RED sign shall be used
 - There are Guidelines (similar to signal warrants) for Pedestrian Hybrid Beacons – variables include:
 - Pedestrian volume
 - Traffic speeds
 - Traffic volumes
 - Crosswalk length

MUTCD Sections 4F.1 and 4F.2

PHB & Intersections

- 2009 MUTCD Section 4F.02, paragraph 04 provides the following Guidance:
 - When an engineering study finds that installation of a pedestrian hybrid beacon is justified, then the PHB should be installed at least 100 feet from side streets or driveways controlled by STOP or YIELD signs."
- This MUTCD statement is "Guidance" not a "Standard" and has been recommended by the NCUTCD to be removed.

99 Over & Under crossings

100 Reno NV

In theory, grade separation = no conflicts

101 Salem OR

 In reality, pedestrians often ignore structures placing themselves in greater danger

102 Salt Lake City UT

Why don't they get used? Longer travel distance

103 Reno NV

Sometimes fences are needed to direct users

Grade separation is more useful for purposes beyond simply crossing from sidewalk to sidewalk

To connect buildings

To cross freeways

To connect land uses

Light rail stations

105 Albuquerque NM

 Overcrossings are expensive because of their height, which requires long ramps Undercrossings require generous dimensions to be attractive: security is the main issue

Good design practice: Users must see light at the end of the tunnel

107

Undercrossing must not intimidate potential user

108 Boulder, CO

Undercrossings work best if roadway is elevated, even if it is just a small amount

109 Boulder CO

Elevated roadway allows open, airy undercrossing

110 Boulder, CO

Undercrossings work best if well lit & attractive

Over/undercrossings

- Why are they not effective for street crossings?
 - They add out-of-direction travel
- □ When are they useful?
 - To connect land uses separated by a roadway
- □ How can you increase their effectiveness?
 - By providing a direct route
 - By providing security

Crossing treatments cost comparison:

Effectiveness

Signing	\$500 - 1,000 *
High visibility markings	\$2,000 - 15,000 **
Advance stop or yield line	
Illumination	\$5,000 - 15,000 ****
Median Islands	\$15,000 - 90,000 ****
Signals (including HAWK)	\$75,000 - 400,000 ***
Over/undercrossings	\$1,000,000 - 4,000,000 *
Proper location	"Priceless" *****

Case Studies

113

- These case studies show before and after pictures of locations where agencies developed projects specifically to enhance pedestrian safety.
- Some of these examples were done based on this workshop.

114

- □ St. Petersburg, FL 4th Street North (US Hwy. 92)
- 3/4-mile signal spacing; No existing marked crosswalks between signals

115 St. Petersburg, FL

Before: View from near Sunken Gardens entrance


```
116 St. Petersburg, FL
```

After: Raised median, Signs with rapid flash beacons, Advance yield lines, High-visibility marked crosswalk

117

Phoenix, AZ – W. Van Buren Street. Before: 1/2-mile signal spacing; high-volume, high-speed; marked crosswalks at unsignalized intersections

Before: No frills marked crosswalk at intersection

Before: Challenging 6-lane crossing at Community Center

After: Marked crosswalk moved to midblock location near Community Center; Raised median with stagger; advance stop lines

After: Raised median with stagger, Advance stop lines (not visible), Location near destination

Learning outcomes: Street Crossings

122

- You should now be able to:
- Identify which crossing techniques are appropriate
- To ensure oft-requested solutions (crosswalks, signals, ped bridges) are effective

