

# New York Best Practice Model Update

#### **Summary Presentation**

Presented by -

NYMTC – Lynne Thisse, Project Manager

Cambridge Systematics -Thomas Rossi & Nikhil Puri







#### **Presentation Outline**

- What is an Activity-Based Model (ABM) and why is it useful?
- Overview of the New York Best Practice Model (NYBPM), the NY metropolitan region's ABM
- Improvements in the latest NYBPM update
- Validation of the updated model
- Uses of NYBPM
- Moving forward



#### What a Model Is...and Is Not

- A model is...
  - An analytical tool to provide important information to planners
  - A means to quantitatively estimate the effects of transportation planning, policy, or investment decisions—or external factors—on transportation demand
- A model is not...
  - A crystal ball—it does not predict the future
  - A way to get "the answer" on a planning decision



#### A Travel Demand Model ...

- ... takes a set of available *input data* ...
- ... and converts it to a set of *output data*, needed for planning analyses ...
- ... using a set of mathematical formulations...
- ... which use *parameters* to perform the conversions



#### How an Activity-Based Model Works





# Advantages of an Activity-Based Model

- Better representation of small but important travel segments
- Considers the role of travel <u>not as a goal in itself</u>, but <u>as a means to perform activities</u> of different types in different places
- Explicitly considers *coordination of travel across the day*, including trip chaining, and within each household
- Results can be summed to estimate <u>impacts on population</u> <u>segments</u> (e.g., equity analysis)

# NYMTC Region Has Had an ABM for Nearly 30 Years

- One of the first major metropolitan areas to develop an Activity-Based Model (ABM)
- Activity-based approach allows for better analysis of emerging demographics, mobility, and technology





# New York Best Practice Model (NYBPM)



- Portions of 3 States: NY, NJ, and CT
- 28 Counties
- 5,418 Traffic Analysis Zones (TAZs)
- ~ 22,500,000 Population
- Almost 60 Million Daily Trips





- NYBPM updates
  - Base Year 2012 (released in 2020)
    - More robust modeling procedures, newly available data sources, increased collaboration, improved data for model validation
  - Base Year 2019 (to be released in December 2022)
    - Improved, simplified model structure and new features
    - Introduced location-based service data (LOCUS) for model validation
- New features
  - Incorporation/validation of TNC travel
  - Open road tolling



Extensive member agency involvement and training, improved functionality and user interface



## Data Updates for 2019

- Latest official 2019 population/employment data
- Updated data for model validation
  - Traffic counts
    - Updated to 2019
    - Use only "real" counts (eliminated synthesized counts)
  - Transit ridership and surveys
    - Updated to 2019
    - Comprehensively recompiled and processed data from different sources to minimize inconsistencies
  - Introduced location-based service data (LOCUS) for model validation
    - Origin-destination patterns
    - Time of day by tour purpose
    - Visitor model

#### Highlights of NYBPM







#### Regional activity-based model

- 28 counties in three states
- ~67,000 roadway segments
- All major highway and transit modes included
- Built from Household Travel Surveys and other data

For each forecast year, the NYBPM predicts travel demand for **9 trip purposes** by **4 time periods** for **7 modes** 



All codable projects in the fiscally-constrained *Regional Transportation Plan (RTP)* and *Transportation Improvement Program (TIP)* are coded in the NYBPM networks as a "build" scenario



# The Region's Activity-Based Model

- Developed through a true team effort including:
  - NYMTC staff and on-site contractors
  - Consultant team led by CS
  - Model Advisory Committee
- Used the latest data
  - NYMTC's surveys (Regional Household Travel Survey, Regional Establishment Survey)
  - NYMTC official socioeconomic data
  - General Transit Feed Specification information on transit systems
  - Traffic counts from various jurisdictions
  - Transit ridership information and surveys from the region's providers
  - LOCUS
- Efficient user interface and reporting functions



## Improvement Goals for 2019 Update

- Maintain goals of 2012 update, which included:
  - Improved transparency/accessibility
  - Robust, modern modeling procedures
  - Improved network representation using newly available data sources and procedures
  - Systematic, comprehensive validation
  - Additional reporting features
- Take advantage of knowledge of NYMTC staff and partner agencies (through the Model Advisory Committee)



#### Improvement Goals for 2019 Update (cont'd)

- Update results to be based on a more recent timeframe (2019)
- Improve ability to estimate key measures of travel by all modes (with a particular emphasis on transit)
- Improve model operation and user friendliness
  - Streamline model execution
  - Enhance reporting

These goals were achieved, and the model represents travel well at the regional level





- Not a "black box"
- All code and TransCAD scripts are open source or owned by NYMTC (and therefore can be made available)
- Model results stored in databases for easy access
- Customized reporting



# Robust, Modern Modeling Procedures

- Overall structure based on modern research and tested in previous settings
- Specifically adapted and revised for the unique New York area environment
- Made optimal use of all available local data for model estimation and validation



#### **Data Updates**

- Updated and improved accuracy of highway data
  - Traffic counts updated to 2019 and cleaned up
- LOCUS
  - 2019 data
  - Larger sample size
  - Detailed O-D and time of day patterns
- Improved validation and reporting



## Core Model Components

(about 65 components total)







## Systematic, Comprehensive Validation

- Based on industry standard procedures
- Validation plan followed closely
- Every component validated and reviewed by NYMTC and Model Advisory Committee members
- Aggregate results examined intensely
- When something didn't work, we explored and made adjustments as appropriate



#### Purpose of Model Validation

- Confirm that model accurately reflects travel behavior in the region, under existing and potential future conditions
  - Run model for base year, compare to observed data
  - Examine sensitivity of model results to key variables (e.g., travel time, cost, demographic changes)
  - Ensure that results are reasonable for required types of planning analyses





#### Compare volumes to counts

- % vehicle miles traveled difference by facility type
- Screenline crossing comparisons
- Major route/crossing comparisons
- Comparing volumes on individual links

|         | •           |
|---------|-------------|
| Irancit | comparisons |
| Hallolt | comparisons |

- Comparisons at station group, geography, service type levels
- Not straightforward due to variety of services, transfers, data inconsistencies

|                            | Model VMT  | Count VMT  | % Diff | Target |
|----------------------------|------------|------------|--------|--------|
| Interstate/Freeway/Tollway | 21,408,580 | 21,576,781 | -1%    | 7%     |
| Principal Arterial         | 3,465,794  | 3,587,811  | -3%    | 10%    |
| Minor Arterial             | 2,569,045  | 2,546,392  | 1%     | 10%    |
| Major Collector            | 669,109    | 600,967    | 11%    | 15%    |
| Minor Collector            | 135,182    | 146,440    | -8%    | 15%    |
| Total                      | 28,306,532 | 28,518,060 | -0.7%  | 1%     |

|                    | % Difference |
|--------------------|--------------|
| From/to Manhattan  | 4.9%         |
| Intra-Manhattan    | 5.1%         |
| Other Intra-NYC    | 10.6%        |
| Other Cross-Hudson | 14.8%        |
| Other Intra-NYS    | 12.0%        |
| Other NY-NJ        | -10.2%       |
| NY-CT              | -11.0%       |
| Regional cordon    | 0.3%         |





- Transparent, easy-to-use user interface
  - Does require a basic understanding of modeling
- Simulates regional travel well
  - Ideal for transportation conformity
  - Existing and future conditions
  - Geographic coverage
  - Auto+ taxi+ truck+ subway+ commuter rail + bus + ferry
    - Distinguishes between commuter and local buses;
    - Select Bus Service
- Ability to model corridors and subareas





#### What can we use the NYBPM for?

- Regional planning
  - Long range transportation plans (land use, network, pricing)
  - Transportation conformity (VMT, VHT, Speed)
  - Subarea/corridor analysis (VMT, VHT, Speed)
  - Truck volumes
- Policy analysis
  - Pricing/tolling (mode shifts, diversions)
  - Peak spreading
- Project analysis
  - Scenario and long-range planning
  - Equity analysis (impacts on low-income populations)

Some applications require customization and area-specific details



#### What can we use the NYBPM for? (continued)

- Transit planning
  - Mode shifts as a result of improved service
  - Impact of Transit Signal Priority
  - Demand for a new ferry service?
- Changing travel behavior
  - Testing work-from-home impacts
  - Active transportation
  - Technology-driven changes (open road tolling, Uber/Lyft, etc.)



# Moving Forward...

- The model is operational and validated for the 2019 base year
  - Model Advisory Committee review will be forthcoming
  - Sensitivity testing is underway
  - Documentation is being prepared
  - NYBPM 2019 will be used for upcoming conformity analysis
  - Model will be available from NYMTC for use in 2023
  - Training will be conducted in early 2023